MARSCADEMY

Differentiation

P3 Textbook page 123 to 145

Part 1 - Operation rules


1.The Chain Rule

๐Ÿ‘ผ Basics:

dydx=dyduร—dudxIfย y=(f(x))nย ,ย thenย dydx=n(f(x))nโˆ’1fโ€ฒ(x)Ifย y=f(g(x))ย ,ย thenย dydx=fโ€ฒ(g(x))gโ€ฒ(x) \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}\\[1em] \text{If }y=(f(x))^n\text{ , then }\frac{dy}{dx}=n(f(x))^{n-1}f^{\prime}(x)\\[1em] \text {If } y=f(g(x)) \text { , then } \frac{d y}{d x}=f^{\prime}(g(x)) g^{\prime}(x)

Where yy and uu are two functions of xx

The second and third expressions are just different ways to express the first one

๐Ÿ’ก Example 1-1
y=(2x4+x)5dydx=?Letย u=2x4+xโˆดy=u5dudx=8x3+1dydu=5u4โˆตdydx=dyduร—dudxโˆดdydx=5u4(8x3+1)=5(2x4+x)4(8x3+1) y=(2x^4+x)^5\qquad \frac{dy}{dx}=? \\[2em] \text{Let } u=2x^4+x\\[2ex] \therefore y=u^5\\[2ex] \frac{du}{dx}=8x^3+1\\[3ex] \frac{dy}{du}=5u^4\\[3ex] \because \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}\\[3ex] \begin{aligned} \therefore \frac{dy}{dx} &=5u^4(8x^3+1)\\[2ex] &=5(2x^4+x)^4(8x^3+1) \end{aligned}

Thereโ€™s no need to open the bracket(further simplification/reduction is not needed)

๐Ÿ›น Trick

Itโ€™s actually very easy, you just have to think that this is a function in side

a function, like a smaller function wrapped in a bigger one So you need to

differentiate the bigger one then multiply the differentiation of the inside

wrapped function

๐Ÿšง Note

We can also solve the equation by using the second and third formula in the

above Basics sections We can let y=f(x)=3x4+5y=f(x)=3x^4+5, and we need to find the

derivative of y5=(f(x))5y^5=(f(x))^5

Or we can let g(x)=3x4+5g(x)=3x^4+5, f(x)=x5f(x)=x^5, and find the derivative of

f(g(x))=(3x4+5)5f(g(x))=(3x^4+5)^5 (If you donโ€™t understand this part, you need to revisit

Function)

You can practice Exercise 6C on page 130


2.The Product Rule

๐Ÿ‘ผ Basics:

Ifย y=uvย ,ย thenย dyย dx=udvย dx+vduย dx \text {If } y=uv \text { , then } \frac{\mathrm{d} y}{\mathrm{~d} x}=u \frac{\mathrm{d} v}{\mathrm{~d} x}+v \frac{\mathrm{d} u}{\mathrm{~d} x}

Where vv and vv are two functions of xx

๐Ÿ’ก Example 1-2
Givenย thatย f(x)=x23xโˆ’1fโ€ฒ(x)=?Letย u=x2ย andย v=3xโˆ’1=(3xโˆ’1)12โˆดdudx=2xdvdx=3โ‹…12(3xโˆ’1)โˆ’12โˆตgdydx=udvdx+vdudxโˆดfโ€ฒ(x)=x2โ‹…32(3xโˆ’1)โˆ’12+3xโˆ’1โ‹…2x=3x2+12x2โˆ’4x23xโˆ’1=15x2โˆ’4x23xโˆ’1=x(15xโˆ’4)23xโˆ’1 \text{Given that }f(x)=x^2\sqrt{3x-1}\qquad f^{\prime}(x)=?\\[2em] \text{Let } u=x^{2} \text{ and } v=\sqrt{3 x-1}=(3 x-1)^{\frac{1}{2}}\\[2ex] \therefore \frac{d u}{d x}=2x\qquad \frac{d v}{d x}=3 \cdot \frac{1}{2}(3 x-1)^{-\frac{1}{2}}\\[3ex] \because g \frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\\[3ex] \begin{aligned} \therefore f^{\prime}(x)&=x^{2} \cdot \frac{3}{2}(3 x-1)^{-\frac{1}{2}}+\sqrt{3 x-1} \cdot 2 x\\[3ex] &=\frac{3 x^{2}+12 x^{2}-4 x}{2 \sqrt{3 x-1}} \\[3ex] &=\frac{15 x^{2}-4 x}{2 \sqrt{3 x-1}}=\frac{x(15 x-4)}{2 \sqrt{3 x-1}} \end{aligned}

You can practice Exercise 6D on page 133


3.The Quotient Rule

๐Ÿ‘ผ Basics:

Ifย y=uvย ,ย thenย dydx=vdudxโˆ’udvdxv2Ifย f(x)=g(x)h(x)ย ,ย thenย fโ€ฒ(x)=h(x)gโ€ฒ(x)โˆ’g(x)hโ€ฒ(x)(h(x))2 \text{If }y=\frac uv \text{ , then }\frac{dy}{dx}={{v\frac{du}{dx}-u\frac{dv}{dx}}\over v^2}\\[2em] \text{If }f(x)=\frac{g(x)}{h{(x)}}\text{ , then }f^{\prime}(x)=\frac{h(x) g^{\prime}(x)-g(x) h^{\prime}(x)}{(h(x))^{2}}

Where uu and vv are two functions of xx

The second expression is just different ways to express the first one

โœ… Quotient rule is just a special case of the product rule, y=uvy=uv, where vv is now vโˆ’1v^{-1}๏ผŒit can be deduced by the product rule

๐Ÿ’ก Example 1-3
Givenย thatย y=x2x+5yโ€ฒ(x)=?Letย u=xย andย v=2x+5โˆดdudx=1dvdx=2โˆตdydx=vdudxโˆ’udvdxv2โˆดyโ€ฒ=(2x+5)โ‹…1โˆ’xโ‹…2(2x+5)2=5(2x+5)2 \text{Given that }y=\frac {x}{2x+5}\qquad y^{\prime}(x)=?\\[2em] \text{Let } u=x \text{ and } v=2x+5\\[3ex] \therefore \frac{du}{dx}=1\qquad \frac{dv}{dx}=2\\[3ex] \because \frac{dy}{dx}={{v\frac{du}{dx}-u\frac{dv}{dx}}\over v^2}\\[3ex] \begin{aligned} \therefore y^{\prime}&=\frac{(2x+5)\cdot 1-x\cdot 2}{(2x+5)^2}\\[3ex] &=\frac{5}{(2x+5)^2} \end{aligned}

You can practice Exercise 6E on page 135

Part 2 - Trigs & Logs & Exponentials


1. Beginner

๐Ÿ‘ผ Basics:

y=sinโกkxyโ€ฒ=kcosโกkxy=cosโกkxyโ€ฒ=โˆ’ksinโกkxy=ekxyโ€ฒ=kย ekxy=lnย kxyโ€ฒ=kย 1x y=\sin kx\qquad y^{\prime}=k\cos kx \\[2ex] y=\cos kx \qquad y^{\prime}=-k\sin kx \\[2ex] y=e^{kx} \qquad y^{\prime}=k\ e^{kx}\\[2ex] y=ln\ kx \qquad y^{\prime}=k \ \frac 1x \\[2ex]

โš ๏ธ Proof the derivative of sinย xsin\ x and cosย xcos\ x by fisrt principal

First you need to know the small angle approximation(saa) for sinsin and coscos

(saa = when x approaches 0, the value of sinย xย andย cosย xsin\ x \text{ and }cos\ x)

sinย xโ‰ˆxsin\ x\approx x, cosย xโ‰ˆ1โˆ’12x2cos\ x\approx1-\frac1 {2}x^2, xx is in radians

You donโ€™t need to know how to prove saa, it is not required by the exam

(But if you are really interested in it, click here to see a video explanation)

Now by using saa we can find the value of following limits

limโกhโ†’0sinโกhh=limโกhโ†’0hh=1limโกhโ†’0cosโกhโˆ’1h=limโกhโ†’01โˆ’12h2โˆ’1h=limโก_hโ†’0(โˆ’12h)=0 \lim _{h \rightarrow 0} \frac{\sin h}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=1\\[2em] \lim _{h \rightarrow 0} \frac{\cos h-1}{h}=\lim _{h \rightarrow 0} \frac{1-\frac{1}{2} h^{2}-1}{h}=\lim \_{h \rightarrow 0}\left(-\frac{1}{2} h\right)=0

You donโ€™t have to memorise the limit, if the relevant topic is tested, the question will provide the hint of the limit for you

Now Letโ€™s prove the derivative!

Letf(x)=sinโกxfโ€ฒ(x)=limโกhโ†’0f(x+h)โˆ’f(x)h=limโกhโ†’0sinโก(x+h)โˆ’sinโกxh=limโกhโ†’0sinโกxcosโกh+cosโกxsinโกhโˆ’sinโกxh=limโกhโ†’0(coshโˆ’1h)sinโกx+(sinโกhh)cosโกxSinceย cosโกhโˆ’1hโ†’0ย andย sinโกhhโ†’1Theย expressionย insideย theย limitย tendsย to0ร—sinโกx+1ร—cosโกxSoย limโก_hโ†’0sinโก(x+h)โˆ’sinโกxh=cosโกxHenceย theย derivativeย ofย sinโกxย isย cosโกx. \text{Let} \quad f(x) =\sin x\\[2em] \begin{aligned} f^{\prime}(x) &=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\[3ex] &=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}\\[3ex] &=\lim _{h \rightarrow 0} \frac{\sin x \cos h+\cos x \sin h-\sin x}{h} \\[3ex] &=\lim _{h \rightarrow 0} \left(\frac{cos h-1}{h}\right)\sin x + \left(\frac{\sin h}{h}\right)\cos x \end{aligned} \\[3ex] \text{Since }\quad \frac{\cos h-1}{h} \rightarrow 0 \quad \text{ and } \quad \frac{\sin h}{h} \rightarrow 1 \\[3ex] \text{The expression inside the limit tends to}\\[3ex] 0 \times \sin x+1 \times \cos x\\[3ex] \text{So } \lim \_{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}=\cos x \\[3ex] \text{Hence the derivative of } \sin x \text{ is } \cos x.

Try the derivative of cosโกx\cos x yourself. The answer is on page 124 of P3 text book.

๐Ÿ”ฅ If you donโ€™t have the textbook, hit us on Wechat, we will send you for free!

๐Ÿ’ก Example 2-1
Ifย y=4cosโก4xyโ€ฒ=?โˆตy=cosโกkxyโ€ฒ=โˆ’ksinโกkxโˆดย yโ€ฒ=โˆ’4sinโก4xโ‹…4=โˆ’16sinโก4x \text{If }y=4\cos 4x \qquad y^{\prime}=? \\[2em] \because y=\cos kx \qquad y^{\prime}=-k\sin kx\\[2ex] \therefore \ y^{\prime}=-4\sin 4x \cdot 4=-16\sin 4x

Easy, right? Itโ€™s just cosโกx\cos x with 4x4x plus the chain rule!

You can practice Exercise 6A on page 125

๐Ÿ’ก Example 2-2
Ifย y=4e2xyโ€ฒ=?โˆตย y=ekxyโ€ฒ=kย ekxโˆดย yโ€ฒ=4e2xโ‹…2=8e2x \text{If }y=4e^{2x} \qquad y^{\prime}=? \\[2em] \because \ y=e^{kx} \qquad y^{\prime}=k\ e^{kx}\\[2ex] \therefore \ y^{\prime}=4e^{2x}\cdot 2 = 8e^{2x}
๐Ÿ’ก Example 2-3
Ifย y=4ln2xyโ€ฒ=?โˆตy=lnย kxyโ€ฒ=k1xโˆดย yโ€ฒ=4โ‹…12xโ‹…2=4x \text{If }y=4ln2x \qquad y^{\prime}=? \\[2em] \because y=ln\ kx \qquad y^{\prime}=k\frac 1x\\[2ex] \therefore \ y^{\prime}=4 \cdot \frac 1{2x} \cdot 2= \frac{4}{x}

๐Ÿ•ณ๏ธ Something trickier

y=axyโ€ฒ=?Firstย weย needย toย convertย axtoย somthingย withย baseย e?y=ax=elnโกax=exlnโกa y=a^x \qquad y^{\prime}=? \\[2em] \text{First we need to convert }a^x \text{to somthing with base } e^? \\[2ex] \begin{align*} y&=a^x\\ &=e^{\ln a^x}\\ &=e^{x\ln a} \end{align*}

โš ๏ธThis is because:

Letโ€™s assume eb=axe^b=a^x

Then logโกeax=b\log_e{a^x}=b

โˆดย ax=eb=elogeax=elnโกax\therefore\ a^x=e^b= e^{log_ea^x}=e^{\ln a^x}

If you donโ€™t understand this, you need to revisit logarithms

Now we can continue our differentiation:

yโ€ฒ=exlnโกaโ‹…lnโกa=axlnโกa \begin{align*} y^{\prime}&=e^{x\ln a}\cdot \ln a\\[1ex] &=a^x\ln a \end{align*}

โš ๏ธYou donโ€™t have memorize this, it will be on the formula sheet

But I highly recommend you to practice it

Remember lnโกa\ln a is just a constant so the derivative of xlnโกax\ln a is just lnโกa\ln a

โ›ณ Example 2-4
Ifย y=3e3x+23xyโ€ฒ=?y=3e3x+e3xlnโก2ย yโ€ฒ=3e3xโ‹…ย 3ย +23xย โ‹…ย 3lnโก2 \text{If }y=3e^{3x}+2^{3x} \qquad y^{\prime}=? \\[2em] y=3e^{3x}+e^{3x\ln 2} \\[2ex] \ y^{\prime}=3e^{3x}\cdot\ 3\ +2^{3x}\ \cdot\ 3\ln 2

You can practice Exercise 6B on page 127


2. Intermediate

๐Ÿ‘ผ Basics

dydx=1dxdyy=arcsinโกxdydx=11โˆ’x2y=arccosโกxdydx=11โˆ’x2y=arctanโกxdydx=11+x2 \frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}\\[3ex] y=\arcsin x \qquad \frac{dy}{dx}=\frac{1}{\sqrt{1-x^{2}}}\\[3ex] y=\arccos x \qquad \frac{dy}{dx}=\frac{1}{\sqrt{1-x^{2}}}\\[3ex] y=\arctan x \qquad \frac{dy}{dx}=\frac{1}{1+x^{2}}

arcarc is the inverse function of the trigonometric functions

If sinโกx=b\sin x=b, then arcsinโกb=x\arcsin b =x

๐Ÿ’ก Example 2-5
y=arcsinโกxyโ€ฒ=?โˆดย sinโกy=xdxdy=cosโกysinโก2y+cosโก2y=1dxdy=cosโกy=1โˆ’sinโก2y=1โˆ’x2โˆดย dydx=11โˆ’x2 y=\arcsin x \qquad y^{\prime}=? \\[2em] \therefore\ \sin y=x\\[2ex] \frac{dx}{dy}=\cos y\\[3ex] \sin^2y+\cos^2y=1\\[2ex] \frac{dx}{dy}=\cos y=\sqrt{1-\sin^2y}=\sqrt{1-x^2}\\[3ex] \therefore\ \frac{dy}{dx}=\frac{1}{\sqrt{1-x^2}}

Try prove the rest by yourself. The examples are on P3 textbook page 139 to140

โ“ Your turn
y=sinโก5xyโ€ฒ=? y=\sin^5x \qquad y^{\prime}=?
Hint

sinโก5x=(sinโกx)5=(f(x))5\sin^5x=(\sin x)^5=\left(f(x)\right)^5 Use the product rule

๐Ÿ—๏ธAnswer key
yโ€ฒ=5ย โ‹…ย sinโก4xย โ‹…ย cosโกx y^{\prime}=5\ \cdot\ \sin ^4 x\ \cdot\ \cos x

โ“ A Harder one

y=x2tanโก12x+tanโก(xโˆ’12) y=x^{2} \tan \frac{1}{2} x+\tan \left(x-\frac{1}{2}\right) \qquad
Hint

tanโกx=sinโกxcosโกx\tan x=\frac{\sin x}{\cos x}, use the quotient rule and the first part of the equation is product rule (y=uvy=uv)

๐Ÿ—๏ธAnswer key
y=x2tanโก2x+tanโก(xโˆ’12)yโ€ฒ=?u=x2v=tanโก2xuโ€ฒ=2xvโ€ฒ=(sinโก2xcosโก2x)โ€ฒ=cosโก2xโ‹…2โ‹…cosโก2xย โˆ’ย (โˆ’sinโก2x)โ‹…2โ‹…sinโก2xcosโก22x=2cosโก22xย +ย 2sinโก22xcosโก22x=2(cosโก22x+sinโก22x)ย cos22x=2cosโก22x=2secโก22xNowย weย know:tanโกkx=ksecโกkxโˆดTheย secondย partย ofย theย quationย is:(tanโก(xโˆ’12))โ€ฒ=secโก2(xโˆ’12)โ‹…1โˆดย yโ€ฒ=uโ€ฒv+vโ€ฒu+secโก2(xโˆ’12)=2xโ‹…tanโก2x+ย 2secโก22xโ‹…x2ย +secโก2(xโˆ’12) y=x^{2} \tan 2x+\tan \left(x-\frac{1}{2}\right)\qquad y^{\prime}=?\\[2em] u=x^2 \qquad v=\tan 2x \\[3ex] u^{\prime}=2x\\[3ex] \begin{align*} v^{\prime}=\left(\frac {\sin 2x}{ \cos 2x}\right)^{\prime} &={\cos 2x \cdot 2 \cdot \cos 2x \ -\ (-\sin 2x)\cdot 2 \cdot \sin 2x \over \cos^2 2x}\\[3ex] &={2\cos^2 2x \ + \ 2\sin^2 2x\over \cos^2 2x}\\[3ex] &={2(\cos^2 2x +\sin^2 2x)\over \ cos^2 2x}\\[3ex] &=\frac 2{\cos^2 2x}\\[3ex] &=2\sec^2 2x \end{align*} \\[3ex] \text{Now we know:}\\[3ex] \tan kx =k\sec kx\\[3ex] \therefore \text{The second part of the quation is:}\\[2ex] \left( \tan \left(x-\frac{1}{2}\right) \right)^{\prime}=\sec^2 \left( {x- \frac 12} \right) \cdot 1\\[3ex] \begin{align*} \therefore \ y^{\prime} &=u^{\prime}v+v^{\prime}u+\sec^2 \left( {x- \frac 12} \right)\\[3ex] &=2x \cdot \tan 2x +\ 2\sec^2 2x \cdot x^2 \ + \sec^2 \left( {x- \frac 12} \right) \end{align*}

When you finish the question, or you read the answer key, you will find than we can also derivative tanโกx\tan x and other trigonometric equations.

Following are the cheat sheet for the derivative of further trigonometric functions. But we high recommend you be familiar with them.

You donโ€™t have to memorize these. These will be on provided on the formula book during exams.

Formula Book

๐Ÿ‘ผ Further trig derivatives

y=tanโกkxdydx=ksecโก2kxy=cosecโกkxdydx=โˆ’kcosecโกkxโ‹…cotโกkxy=secโกkxdydx=ksecโกkxโ‹…tanโกkxy=cotโกkxdydx=โˆ’kcosecโก2kx \begin{aligned}&y=\tan k x \qquad \frac{dy}{dx}=k \sec ^{2} k x \\[3ex] &y=\operatorname{cosec} k x \quad \frac{{d} y}{dx}=-k \operatorname{cosec} k x \cdot \cot k x \\[3ex] &y=\sec k x \qquad \frac{\mathrm{d} y}{{d} x}=k \sec k x \cdot \tan k x \\[3ex] &y=\cot k x \qquad \frac{{d} y}{{d} x}=-k \operatorname{cosec}^{2} k x\end{aligned}

Try prove other trig functions than tanโกx\tan x, the examples are in page 137 to

You can practice Exercise 6F on page 140

๐ŸŽ† Congrats ๐Ÿ‘! This is the end of the chapter, complete the exercise between page 123 and 143 on the text book. You can skip some if they are too simple, but we highly recommend ๐Ÿ’ช you to finish all the questions in the โ€œChapter reviewโ€ section (Page 142). If you donโ€™t have the textbook or the answers to the practice questions, ๐Ÿ”ฅ hit us on Discord we will send you for free ๐Ÿ™Œ๐Ÿผ.

We know it is a big chapter, so start practicing๐Ÿ’จ๐Ÿ’จ๐Ÿ’จ The more you practice, the better you get โ€ผ๏ธ